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Let L be a complete orthomodular lattice. There is a one to one correspondence between
complete Boolean subalgebras of L contained in the center of L and endomorphisms j

of L satisfying the Borceux–van den Bossche conditions.
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1. INTRODUCTION

In Román and Zuazua (2005), we study the notion of an idempotent right-
sided quantale versus the concept of orthomodular lattice. We proved that a com-
plete orthomodular lattice L has a natural structure of an idempotent right-sided
quantale if we take the central cover of an arbitrary element a (denoted by e(a)) of
L; this construction induces an endomorhism of L satisfying certain conditions,
see section I for more details. Therefore, there is a natural question after this claim:
which endomorphisms of L can produce an idempotent, right-sided quantale?

Recall that when the endomorphism j : L → L satisfies the Borceux–van
den Bossche’s (denoted by B.-V.B.) conditions, then j induces an idempotent,
right-sided quantale in L; in fact, the structure is quite simple: if a, b are arbitrary
elements of Q then a&b = a ∧ j (b). For details see Borceux and van den Bossche
(1986) or Román and Zuazua (2005). The endomorphism j is a closure operator
satisfying three conditions which are related with the concepts of nucleus and
quantic nucleus considered in intuitionistic logic and quantum logic. In Román
and Rumbos (1991), we gave a characterization of nuclei in orthomodular lattices
and quantic lattices which in particular produces a characterization of quantic
nuclei in orthomodular lattices. The difference here is the binary operation &F

considered in Román and Rumbos (1991). This operation was first considered by
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Finch (1970), where he suggested that &F has very similar properties with the
connectives (∧,→), considered in classical logic and intuitionistic logic. In fact,
this is true but the main difference is the lack of the associativity property of &F .
Nevertheless, −&F b : L → L has a right adjoint which is the Sasaki hook, for
an arbitrary element b of L. Unfortunately, the operation b&F − : L → L does
not have a nice property such as &F is associative, b&F − has a right adjoint or
b&F − preserves order. In fact, if L satisfies one of these conditions then L will
be a Boolean algebra and conversely, if L is a Boolean algebra then a&F b is just
a ∧ b. For details see Román and Rumbos (1991).

After all these comments, I would like to say some words about the result
I will prove. Last year, Prof. R. Greechie suggested the following idea: perhaps
the work of M. F. Janowitz can help to characterize all the endomorphisms of
a complete orthomodular lattice satisfying the B.-V.B. conditions; I must say he
was quite right, the paper of M. F. Janowitz, under the title “Residuated Closure
Operators” gave me some ideas that are crucial in the proof of the main result of
this article (see Janowitz, 1967).

Finally, the reader must note that by “the logic of quantum mechanics” we
mean the lattice theoretic “quantum logics” of Birkhoff and von Neumann (1936),
hence we do not consider the quantales introduced by Yetter (1990), under the
name of “Girard Quantales” where he considers a different logic for quantum
mechanics; roughly speaking the logic considered by David Yetter is a logic
involving an asociative (in general noncommutative) operation “and then.” Yet,
Girard quantales have a close relation with linear logic, a logic introduced by
J. Y. Girard, the reader can consult (Finch, 1970) for details and comments about
this logic. Clearly, a natural question is if linear logic has some relation with the
quantum logic introduced by Birkhoff and von Neumann, we will look about this
problem in a future work.

The article is organized as follows. In the first section we introduce the
concepts we need for our purposes. In the second section we show the main
results of this article. We prove that if we have an arbitrary j : L → L satisfying
the Borceux–van den Bossche conditions then j (L) is a Boolean subalgebra of
L contained in the center of L and conversely every Boolean subalgebra M of L

contained in the center of L induces an endomorphism k satisfying the B.-V.B.
conditions. Hence there is a one to one correspondence between endomorphisms
j satisfying the B-V.B. conditions and Boolean subalgebras of L contained in the
center of L.

2. SECTION I

Definition 1. A quantale Q is a lattice having arbitrary joins ∨ together with an
associative product & such that



Orthomodular Lattices and Quantales 785

1. a&(∨i∈I bi) = ∨i∈I (a&bi);
2. (∨i∈I ai)&b = ∨i∈I (ai&b)

for all a, b, ai, bi ∈ Q.

Moreover, we will say that the quantale Q is an idempotent and right-sided
if it satisfies the following two conditions

1. a&1 = a;
2. a&a = a for all a ∈ Q.

Remark 1. In Borceux and Van Den Bossche (1986) F.Borceux and G. van
den Bossche proved that given any complete lattice (Q,≤) there is a one-to-
one correspondence between binary operations & : Q × Q → Q making Q an
idempotent, right-sided quantale and closure operations j : Q → Q satisfying the
following axioms (these are the B.-V.B. conditions):

1. a ≤ j (a);
2. j (a ∧ j (b)) = j (a) ∧ j (b);
3. a ∧ j (∨i∈I bi) = ∨i∈I (a ∧ j (bi));
4. (∨i∈I ai) ∧ j (b) = ∨i∈I (ai ∧ j (b)).

We just mention a simple consequence of this result. If we have an endomor-
phism j of a complete lattice Q satisfying the B.-V.B. conditions and we take the
fixed points of j (denoted by Qj ) then Qj is not only a quantale is a locale as the
reader can check easily. Hence, in logical terms any idempotent and right-sided
quantale Q has a locale as a sublattice; i.e., Q has a model of intuitionistic logic.

In the rest of this article we shall work only with an idempotent right-sided
quantale. There are many examples of these quantales. For instance, any Locale
H is an idempotent, right-sided quantale in a trivial way; the binary operation &
is just ∧. The closed ideals of a C∗-algebra is also an example, here the binary
operation & is just the closure of the product of two ideals. For the next example
we need some definitions. We begin with the following

Definition 2. A complete lattice L = (L,∨,∧,⊥) is a complete orthomodular
lattice if there exists a unary operation ⊥ : L → L satisfying the conditions:

1. a⊥⊥ = a.

2. (
∨

i∈I ai)⊥ = ∧
i∈I a⊥

i , for all a, ai ∈ L and any set I

3. a ∨ a⊥ = 1.

4. a ∧ a⊥ = 0.

Moreover, L satisfies the following weak modularity property:
Given any a, b ∈ L with a ≤ b then b = a ∨ (a⊥ ∧ b) (equivalently a = (a ∨
b⊥) ∧ b).
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As we said in the introduction, if we have a complete orthomodular lattice
L, the way of inducing an idempotent, right-sided quantale structure in L is by
taking the central cover of an element. We shall introduce more concepts.

First of all, given two arbitrary elements a, b of an arbitrary complete or-
thomodular lattice L, a&F b = (a ∨ b⊥) ∧ b and the Sasaky hook is given by the
following rule: a → b = (a ∧ b) ∨ a⊥. Since we are interested in the center of a
complete orthomodular lattice, we consider first the notion of compatibility:

Definition 3. Let L be a complete orthomodular lattice. We say a, b ∈ L are
compatible elements (denoted by bCa ) if and only if b&F a = a ∧ b.

Notice that whenever a, b are compatible elements it is easy to see that
a&F b = a ∧ b also holds.

The simplest example of a pair of elements a, b which are compatible is
whenever one of these elements belongs to the center Z(L) of the complete
orthomodular lattice L. The definition of the center is as follows:

Definition 4. Let L be an arbitrary complete orthomodular lattice. The center of
L, denoted by ZF (L)) is the set

ZF (L) = {a ∈ L | a&F b = b&F a = a ∧ b for all b ∈ L}
Notice that ZF (L) is a Boolean subalgebra of L. In particular, 0, 1 belong

always to the center of L. Hence ZF (L) is nonempty. We define now the central
cover of an arbitrary element of L.

Definition 5. Let L be a complete orthomodular lattice. If a is an arbitrary element
of L, the central cover of a is given by

e(a) = ∧{z ∈ ZF (L) | a ≤ z}.
The central cover of an element always exists since 1 is an element of this

set. The reader can see the comments in Beltrametti and Cassinelli (1981, p. 129).
The next proposition give us the example we are interested in.

Proposition 6. (Román and Zuazua, 2005) The map e : L → L satisfies the
Borceux–van Den Bossche conditions. L has a binary operation &, defined by
a&b = a ∧ e(b), making it an idempotent, right-sided quantale.

Therefore, this is the first example of an endomorphism j of L making it
an idempotent, right-sided quantale. Clearly, the orthomodular lattice must be
complete if one wants to preserve the definition of a quantale. However, almost all
the concepts described above, can be defined in an arbitrary orthomodular lattice.
If we take the classical example of the closed subspaces of a Hilbert space H ,
the center is trivial; the only elements of the center are 0, 1. In the literature an
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orthomodular lattice is called irreducible whenever it has trivial center. Clearly,
if we have an irreducible orthomodular lattice the quantale structure that we get
is not really interesting. However, this phenomenon does not occur always. We
just mention one example of a finite orthomodular lattice with nontrivial center.
Namely, G12.

We close this section with another comment. The binary operation &F is
really important for the construction of the second binary operation &; in fact, all
the concepts we had were defined in terms of &F , despite the lack of associativity
or equivalently that the endomorphism a&F − does not necessarily preserves order.

2. SECTION II

We shall prove now the main result of this article. We will assume L is an
arbitrary complete orthomodular lattice. If we take an arbitrary endomorphism j

of L satisfying the B.-B.V. conditions then clearly L is an idempotent, right-sided
quantale. We just define a&b = a ∧ j (b), for elements a, b in L. Now, the question
is “which endomorphisms j of L satisfy the B.-V.B. conditions?” Actually, can
we give a characterization of such endomorphisms in terms of another concept?
We shall see that this is the case. We would like to recall that some of the results
are inspired by the work of Janowitz (1967). First of all, we begin with the
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following:

Lemma 7. If j : L → L is an arbitrary endomorphism of a complete orthomod-
ular lattice, then given any element a of L, j (a) satisfies the following identity.

j (a) = ∧{x ∈ L | j (x) = x, a ≤ x}.

Proof: Indeed, let us call z the RHS of the last equality. Since, a ≤ j (a) and j

is idempotent, we have z ≤ j (a). Now, a ≤ z and since j preserves order we get
j (a) ≤ j (z) = z. Hence, z = j (a). As we claimed. �

We must notice that j (0) is equal to 0. The reason is quite simple, just take
the empty set for I in the third property of B.-V.B. conditions. We now prove the
next

Proposition 8. Suppose L is an arbitrary complete orthomodular lattice and
j is an endomorphism satisfying the B.-V.B. conditions then the subset Lj of L

defined by

Lj = {x ∈ L | j (x) = x}.
is a complete Boolean sublattice of L contained in the center of L.

Proof: We check first, Lj is a complete lattice. If {bi}i∈I is an arbitrary family of
elements of Lj and taking a = 1, by the third property of the B.-V.B. conditions
we have

j (∨i∈I bi) = 1 ∧ j (∨i∈I bi) = ∨i∈I (1 ∧ j (bi)) = ∨i∈I j (bi) = ∨i∈I bi .

Hence, Lj is a complete lattice. We shall see now Lj is closed under
complements; i.e., if a ∈ Lj then a⊥ also is an element of Lj . We already
knew a⊥ ≤ j (a⊥). We only need to check: j (a⊥) ≤ a⊥. This is equivalent to:
j (a⊥)&F a ≤ 0. Since −&F a has a right adjoint, namely the Sasaky hook, it is
enough to check this. We calculate j (a⊥)&F a.

j (a⊥)&F a = (j (a⊥) ∨ a⊥) ∧ a = a ∧ j (a⊥).

Since a⊥ ≤ j (a⊥). Now, since a ∈ Lj , we shall see, a ∧ j (a⊥) = 0.

a ∧ j (a⊥) = j (a) ∧ j (a⊥) = j (a⊥ ∧ j (a)) ≤ j (a⊥&F j (a)) = j (a⊥&a)

= j (0) = 0

Hence, a ∧ j (a⊥) = 0 and j (a⊥) ≤ a⊥. Therefore Lj is closed under com-
plements.
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We check now Lj is a Boolean sublattice of L. Indeed, if a, {bi}i∈I belong
to Lj , from the third property of the B-V.B. conditions we have

a ∧ (∨i∈I bi) = a ∧ j (∨i∈I bi) = ∨i∈I (a ∧ j (bi)) = ∨i∈I (a ∧ bi).

Therefore Lj is a distributive lattice closed under complements; i.e., Lj is a
Boolean algebra. Finally, we shall see Lj is contained in the center of L.

Suppose a and j (b) are arbitrary elements of L and Lj respectively. We
calculate a&F j (b).

a&F j (b) = (a ∨ j (b)⊥) ∧ j (b) = [a ∨ j (b⊥)] ∧ j (b)

= (a ∧ j (b)) ∨ (j (b)⊥ ∧ j (b)) = a ∧ j (b).

Since Lj is closed under complements and by the third property of the B.-
V.B. conditions. In a similar way, we can check j (b)&F a = j (b) ∧ a. Hence j (b)
is in the center of L. �

Remark 2. In the proof of the proposition we used the inequality a⊥&a ≤
a⊥&F j (a). Actually, it is easy to see that a&b ≤ a&F j (b) for arbitrary elements
a, b in L. Moreover, j (L) is not only a Boolean subalgebra of the center of L, it
is a complete Boolean subalgebra of the center of L.

We will see now the converse of this proposition.

Proposition 9. Let L be an arbitrary complete orthomodular lattice. If ZF (L)
denotes the center of L and M is a complete subalgebra of L then the endomor-
phism j : L → L defined by

jM (a) = ∧{x ∈ M | a ≤ x}.
satisfies the B-V.B. conditions and therefore L is an idempotent, right-sided quan-
tale. The binary operation & is given by a&b = a ∧ jM (b) where a, b are arbitrary
elements of L.

Proof: Clearly, given any element a of L we have: a ≤ jM (a) and jM is idempo-
tent. Moreover, if z ∈ M then jM (z) = z; using these results, jM preserves order
as the reader can check easily. Now, we shall see jM preserves arbitrary suprema.
Suppose {ai}i∈I is a family of elements of L. Since jM preserves order, we only
need to verify jM (∨i∈I ai) ≤ ∨i∈I jM (ai) but this is true since M is a complete
subalgebra of ZF (L) and therefore ∨i∈I jM (ai) ∈ M .

It is not hard to prove the third and the fourth properties of the B.-V.B. since
jM (a) is an element of the center of L and jM perserves arbitrary joins. We only
need to verify the second property; i.e., jM (a ∧ jM (b)) = jM (a) ∧ jM (b). Given
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any element z of M and an arbirary element a of L the identities hold

z ∧ jM (a) = {z ∧ jM (z ∧ a)} ∨ {z ∧ jM (z⊥ ∧ a)}
= {z ∧ jM (z ∧ a)} = jM (z ∧ a)

In particular, jM (a ∧ jM (b)) = jM (a) ∧ jM (b). Hence, jM satisfies the
B.-V.B. conditions as we claimed. �

We summarize the results in the following

Theorem 1. Let L be a complete orthomodular lattice. There is a one to one
correspondence between complete Boolean subalgebras M contained in the center
of L and endomorphisms j : L → L satisfying the Borceux–van den Bossche
conditions.

We would like to mention another example of an orthomodular lattice with
trivial center. The lattice is called MOn for 1 ≤ n. In fact, MOn is not only ortho-
modular, it is modular but it is not distributive.

It is not hard to check that given i 	= j , ai&F aj = aj and aj &F ai = ai .
Hence, the center is trivial.

ACKNOWLEDGMENT

I want to express my sincere thanks to Prof R. Greechie for his suggestion.

REFERENCES

Beltrametti, E. G. and Cassinelli, G. (1981). The logic of Quantum Mechanics. Encyclopedia of
Mathematics and its Applications, 15.



Orthomodular Lattices and Quantales 791

Birkhkoff, G. and von Neumann, J. (1936). The logic of quantum mechanics, Annals of Mathematics
37(2), 823–246.

Borceux, F. and Van Den Bossche, G. (1986). Quantales and their sheaves. Order 3, 61–87.
Finch, P. D. (1970). Quantum logic as an implication algebra, Bulletin of Australian Mathematical

Society 1, 101–106.
Girard, J. Y. (1987). Linear logic. Theoretical Computer Science 50, 1–102.
Janowitz, M. F. (1967). Residuated closure operators, Portugal Mathematics 26, 221–252.
Román, L. and Rumbos, B. (1991). A characterization of nuclei in orthomodular lattices and quantic

nuclei. Journal of Pure and Applied Algebra 73, 155–163.
Román, L. and Rumbos, B. (1991). Quantum logic revisted. Foundations of Physics 21(6), 727–734.
Román, L. and Zuazua, R. (2005). Right-sided idempotent quantales and orthomodular lattices. Inter-

national Journal of Pure and Applied Mathematics. (to appear)
Yetter, N. D. (1990). Quantales and (non commutative) linear logic. The Journal of Symbolic Logic

55(1), 41–64.


